Hadwiger's Conjecture for 3-Arc Graphs
نویسندگان
چکیده
The 3-arc graph of a digraph D is defined to have vertices the arcs of D such that two arcs uv, xy are adjacent if and only if uv and xy are distinct arcs of D with v 6= x, y 6= u and u, x adjacent. We prove Hadwiger’s conjecture for 3-arc graphs.
منابع مشابه
Hadwiger's conjecture for proper circular arc graphs
Circular arc graphs are graphs whose vertices can be represented as arcs on a circle such that any two vertices are adjacent if and only if their corresponding arcs intersect. Proper circular arc graphs are graphs which have a circular arc representation where no arc is completely contained in any other arc. Hadwiger’s conjecture states that if a graph G has chromatic number k, then a complete ...
متن کاملHadwiger's Conjecture for the Complements of Kneser Graphs
A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. An H-minor is a minor isomorphic to H. The Hadwiger number of G, denoted by h(G), is the maximum integer t such that G contains a Kt-minor, where Kt is the complete graph with t vertices. Hadwiger [8] conjectured that every graph that is not (t−1)-colourable contains a Kt-mino...
متن کاملAn approximate version of Hadwiger's conjecture for claw-free graphs
Hadwiger’s conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw-free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw-free graph with chromatic number χ has a clique minor of size ⌈23χ⌉.
متن کاملHadwiger's conjecture for K 6-free graphs
In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph on t+1 vertices is t-colourable. When t ≤ 3 this is easy, and when t = 4, Wagner’s theorem of 1937 shows the conjecture to be equivalent to the four-colour conjecture (the 4CC). However, when t ≥ 5 it has remained open. Here we show that when t = 5 it is also equivalent to the 4CC. More precis...
متن کاملHadwiger's conjecture for line graphs
We prove that Hadwiger’s conjecture holds for line graphs. Equivalently, we show that for every loopless graph G (possibly with parallel edges) and every integer k ≥ 0, either G is k-edge-colourable, or there are k + 1 connected subgraphs A1, ..., Ak+1 of G, each with at least one edge, such that E(Ai ∩ Aj) = ∅ and V (Ai ∩ Aj) 6= ∅ for 1 ≤ i < j ≤ k.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016